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Cramer-Rao lower bounds on estimator variance are calculated for arbitrary unbiased
estimates of signal-to-noise ratio and combiner weight parameters. Estimates are assumed
to be based on a discrete set of observables obtained by matched filtering of a biphase
modulated signal. The bounds are developed first for a problem model based on one
observable per channel symbol period, and then extended to a more general problem in

which subperiod observables are also available.

l. Introduction

This article calculates the Cramer-Rao bounds on the per-
formance of arbitrary unbiased estimates of signal-to-noise
ratio (SNR) and combiner weight parameters. Estimates are
assumed to be based on a discrete set of observables obtained
by matched filtering of a biphase modulated signal. Initially,
we assume in Section II that exactly one observable or “‘sam-
ple” is available per channel symbol period. Later, in Sec-
tion III, we consider a more general problem in which multiple
observables or ‘‘subinterval samples™ are obtained per symbol
period by filtering over equal-length subintervals of each sym-
bol period.

Estimates of signal-to-noise ratio and combiner weight are
of interest in a variety of applications, such as symbol stream
combining. In this article, Cramer-Rao bounds are determined
directly for these parameters of interest, rather than for the
underlying signal mean and noise variance parameters. This
approach also reduces the mathematical complexity, because
many expressions are separable functions of signal-to-noise
ratio and combiner weight. The result is an almost-closed-form
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solution in which only one easily characterizable function of
a single variable (SNR) is not explicitly determined.

Reference 1 provides additional background information
on the significance of the parameters being estimated, and on
the origin of our probabilistic model for the symbol period
observables. Our model for the subinterval observables is a
straightforward generalization, and it has been discussed pre-
viously as the basis for analyzing so-called “split-symbol”
estimators (e.g., see Ref. 2) or “generalized” maximum likeli-
hood estimators,’

Il. Estimation with Symbol Period Sampling

We first consider estimation based on one sample per sym-
bol period. Under this model, there are N discrete observables

1Vilnrotter, V. A, “A Generalized Class of Maximum Likelihood
Estimators,” IOM 331-86.5-82, Jet Propulsion Laboratory, Pasadena,
Calif., January 13, 1986 (JPL Internal Document).



X, i=1, -+, N, which can be represented in the form (see
Eq. (7) of Ref. 1):

X, =Dmt+no ()]

where {D,} is a data modulation sequence corresponding to
the transmitted channel symbols, and {ni} is a noise sequence.
As in Ref. 1, we assume that the {ni} are independent unit
normal random variables, and that the {DI.} are independent
and take on the values +1 and -1 with equal probability. The
unknown parameters m and o represent the magnitudes of the
“signal” and “noise” components of the observables {xi}.

Our estimation problem is to estimate a signal-to-noise
ratio parameter p and a combiner weight parameter «, based
on the vector of observables x = (x , " ** » Xy, ). The parameters
p and o are defined in terms of the underlying signal and
noise parameters m and o as
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We note from Eq. (12) of Ref. 1 that the actual signal-to-noise
ratio at the receiver is only one-half p, but we prefer the
definition in Eq. (2) for mathematical convenience.

The log-likelihood function for this problem is taken from
Eq. (20) of Ref. 1:
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where the notation (), represents a sample average value:
for any function £ applied to the NV samples x , - -, Xy,
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The log-likelihood function may also be written directly in
terms of the signal-to-noise ratio and combiner weight
parameters,

1 1 1 &Py o
——N.an(xlp,a)——7Qn(27r)~732np+52na~ 3
L o+ cosh
-7 p+(ncos ox)y )

The Cramer-Rao bound requires computation of the
Fisher information matrix J,
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After evaluating the indicated derivatives, we find that
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The expectations in Eq. (7) may be evaluated by substitut-
ing Gaussian random variables {ul.} for the non-Gaussian
random variables {x}. Defining

u, = aDx, (8)

where a is the unknown combiner weight and D, = %1 is the
random data modulation embedded in x,, we see that u, is
Gaussian with mean and variance both equal to p:
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E {u,.} = am =m2/a2 =p
Eul} = *(m?+d*)=p*+p ©
var (w} = E{u}}-[E {u}]*=p

Furthermore, because Dl? = ] and because sech (+) is an even
function of its argument,

E {(azxz)N} E{uf} =p%+p

(10)

E {o®x? sech® o)), E'{u? sech? u} 4 E,(p)

The second expectation is written as E2(p), which is not
determined in closed form. However, it is important to note
that Ez(p) is a function of p only, because the statistics of
u, are a function of p only. Inserting these results into the
expressions for th’ we obtain
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In terms of J, the Cramer-Rao bound (Ref. 3) states that
for any unbiased estimates p, & of the unknown parameters

o, Q,
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Calculating ™! from Eq. (11), we obtain
. \
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general result for (13)
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Note that both fractional variance bounds are functions of &
and p but not a. These are exact expressions so far, but further
analysis requires characterization of the function E,(p). This
function is easy to evaluate numerically, but first we consider
its limiting behavior for large and small p. The general case is
discussed and plotted at the end of Section III of this article.

A. High SNR Case

For large p, it can be shown that the function Ez(p) is
exponentially small,
E, (o)~ p PP p>>1 (14)

Thus, the fractional variance bounds can be written
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Both of these expressions are accurate within terms that are
exponentially small in o (i.e., there are no 1/p" terms for
n>1).

B. Low SNR Case

For small p, we make use of the Taylor series expansion
for u® sech? u around u = 0,

2 17
2 2, = 2,4 6 _ 8 4.,
u*sech®u = u wtsu - gzu (16)

and apply the formula for the moments of a Gaussian random
variable (Ref. 4) with mean and variance both equal to p,

E{u?}= p*+p
E{u*y= p%+6p%+3p?
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E{ud} = p®+28p7 +210p% + 420p° + 105p* )

This leads to a Taylor series expansion of the function E, (p)
around p = 0:

E,(p) = p - 20% +40° —3?29“'-- (18)




When this expression is inserted back into Eq. (13), all of the
O, p2, and ,o3 terms in the denominator cancel, i.e.,

p-Qo+1)Ep -8 p + higher order terms (19)

This deep singularity at p = O causes the bounds on the frac-
tional variance to be very large for low SNR.
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lll. Estimation with Subinterval Sampling

Now we consider the same type of bound for a more
general model in which multiple subinterval samples are taken
before their mean value has a chance to change sign. We
assume M independent and equally spaced subinterval samples

, M, for each of the N symbol intervals. The
su{nnterval samples are modeled as

th = Dim, tn, 0, 21
where D, = £] is the same data modulation variable defined in
Eq. (1), {n ]} are independent unit normal random variables,
and m,, and o, denote the subinterval signal and noise param-
eters. Note that the M subinterval samples Xt" i=1,---, M,
are affected by one data modulation variable D, and M inde-
pendent noise variables i =1, ,M.

Our estimation problem is still to estimate the signal-to-
noise ratio and combiner weight parameters for the full sym
bol period. Each block of M subinterval samples X, /

1, -+, M, sums to form a symbol period sample x,,

(22)

This implies that the subinterval signal and noise parameters
appearing in Eq. (21) are related to the full symbol period
parameters by

m =£’L-=..p_.
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The log-likelihood function for the vector of subinterval
observables X = (X,,, s X s Xy s Xyag) 8
obtained analogously to Eq. (3) in terms of the subinterval
signal and noise parameters as
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or, alternatively, in terms of the symbol period signal-to-
noise ratio and combiner weight parameters as

2

npXlp,0) = ——I—Qn(%z)——l-an+Qna—M

MN ’ 2 M 2 20/M
1p 1

-3 % + i {@n cosh ), (25)

In Egs. (24) and (25), (X%,
value of the MN subinterval samples

denotes the mean square

(26)

and #n cosh o), is the same quantity appearing in Eqgs. (3)
and (5), i.e., an average based on the full symbol period sam-
ples Xy

N
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We observe from comparing Egs. (5) and (25) that the
Cramer-Rao bounds for this problem can be obtained trivially
from the bounds derived earlier by substltutmg ME {©*X? MN}
for E{@*x®,} and M E {*x* sech® ax),} for
E {@?x? soch? oox )y} We note that
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where Ez(p) is the same function defined earlier. The Fisher
information matrix elements can immediately be evaluated
from Egs. (7) and (28):
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Inversion of this matrix produces the bounds on the frac-
tional variance of the estimates 2, &:

var (p) S 2 M+ p - E,(p)
2 T N Mp-Q2p+ME,()

p
general result for
R arbitrary N, M, p, o (0)
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A. High SNR Case
For high values of p, the bounds reduce to
var (p) 2 M
2 XN (1 * p—)
p>>1 (€29

As before, these bounds are accurate within terms that are
exponentially decreasing with p. We see that the perfor-
mance bound improves with the total number of samples
MN, regardless of whether they are subinterval samples or
symbol period samples. However, this conclusion is not
correct if the number of subinterval samples gets arbitrarily
large. If M is increased beyond the value of p, the bounds
eventually saturate at
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1<K p <M (32)
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B. Low SNR Case

For low SNR, the deep singularity at p = O in the denomi-
nator of the accuracy bounds is partially relaxed for M > 1,
ie.,

Mp-Q2p+M)E,(p)= 2M-1) p? + higher order terms
for M > 1 (33)
The “higher order terms” in Eq. (33) are small with respect

to (M ~ 1) p* as p gets small, no matter how large M is. The
accuracy bounds are approximately

p<K1<M (34)

var(a)> 1 M
o = onp? M-1

We see from Egs. (20) and (34) that the performance bounds
for small p improve by a large factor 3/(80%) in going from
M =1 toM =2, and then by only an additional factor of 2
fromM =2 to M = o»,

C. Large Number of Subinterval Samples Case

We have seen that the performance bound saturates at a
nonzero limit for both the low SNR and high SNR cases, as
the number of subinterval samples M goes to infinity. This
saturation value can be calculated from Eq. (30) for all SNR
values, in terms of the function E2(p).

var @ N 4
02 T N lo-E,(p)]

M>>max (p, 1) (35
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D. General Case

The Cramer-Rao bounds for the general case are plotted in
Figs. 1 and 2 for the signal-to-noise ratio and combiner weight
estimates, respectively. Each curve shows the lower bound on



the fractional estimator variance times the number of symbol
period samples V, as a function of signal-to-noise ratio p.
Curves are drawn for various numbers of subinterval samples
M, including the case M = 1, which is equivalent to the case of
full symbol period sampling considered in Section II of this
article.

The ordinate in these plots may be interpreted as a lower
bound on the number of symbol period samples N required
to achieve a fractional estimator variance of 100%. If a smaller
fractional estimator variance is desired, say e, the bound on
the required number of samples is simply increased by the
factor 1/e.

IV. Conclusions

Figures 1 and 2 present a strong case for taking subinterval
samples. In the low SNR region, split-symbol estimators can
potentially reduce the number of required samples by orders
of magnitude relative to estimates based entirely on full sym-

bol period samples. The bulk of this reduction results from
splitting the symbol period in half (M = 2), and additional
improvement is limited to 3 dB as the number of subinterval
samples is increased further. In the high SNR region, it pays to
keep increasing the number of subinterval samples, but rapidly
diminishing returns are encountered when the number of
subinterval samples is increased beyond the true value of the
signal-to-noise ratio. Of course, if the true SNR is extremely
high, the practical limit on the number of worthwhile subin-
terval samples may be set by bandwidth constraints rather
than SNR constraints.

A caveat must be attached to all of the analysis, and hence
the conclusions, in this article. Performance bounds derived
here apply only to unbiased estimators. Perhaps the require-
ment that the full symbol period estimator be perfectly un-
biased is too tight a constraint to impose in the low SNR
region. Further work should investigate the possible trade-offs
between estimator bias and estimator variance, especially for
full symbol period estimators at low SNR,
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Fig. 1. Cramer-Rao lower bound on unbiased signal-to-noise ratio
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